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Abstract

It is shown that each one-parameter subgroup ofSL(2,R) gives rise to a local correspondence
theorem between suitably generic solutions of arbitrary scalar equations describing pseudo-spherical
surfaces. Thus, if appropriate genericity conditions are satisfied, there exist local transformations
betweenany twosolutions of scalar equations arising as integrability conditions ofsl(2,R)-valued
linear problems.

A complete characterization of evolution equationsut = K(x, t, u, ux, . . . , uxk ) which are of
strictly pseudo-spherical type is also provided.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A scalar differential equationΞ(x, t, u, . . . ) = 0 is of pseudo-spherical type(or, it
describes pseudo-spherical surfaces) if there exist functionsfij , i = 1,2,3, j = 1,2,
depending onx, t, u and a finite number of derivatives ofu, such that the one-formsωi =
fi1 dx + fi2 dt satisfy the structure equations

dω1 = ω3 ∧ ω2, dω2 = ω1 ∧ ω3, dω3 = ω1 ∧ ω2, (1)

wheneveru(x, t) is a solution ofΞ = 0. If u : M ⊆ R2 → R satisfies(ω1∧ω2)(u(x, t)) �=
0—what will be called “III-genericity” inSection 2—the structureequations (1)imply that
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{ω1(u(x, t)), ω2(u(x, t))} is a moving coframe onM with connection one-formω3(u(x, t)),
and that the Gaussian curvature of the metricω1 ⊗ ω1 + ω2 ⊗ ω2 onM is −1.

In 1995, Kamran and Tenenblat[13] proved a most interesting correspondence theorem
for scalar equations describing pseudo-spherical surfaces: motivated by the classical fact that
two surfaces of constant Gaussian curvature equal to−1 are locally indistinguishable, they
showed that given two such equations, and III-generic solutionsu(x, t) andû(x̂, t̂ ) of them,
one can relateu(x, t) andû(x̂, t̂ ) by integrating first-order systems of equations. They then
obtained aformulafor û(x̂, t̂ ) in terms of the functionu(x, t) and some “pseudo-potentials”
determined solely byu(x, t).

This transformation result goes well beyond the classical Bäcklund theorem[8]: it requires
an explicit change of independent variables, while Bäcklund’s result involves only a change
in the dependent variable; it is not, apparently, tied up to symmetry considerations (see
[1,4,8] for discussions on symmetries and Bäcklund correspondences); finally, it is not
restricted to transforming solutions of a same equation, or even of equations of the same
order.

The main goal of this work is to present some new correspondence results à la Kamran–
Tenenblat: they are reported inSection 3. The key observation which allows one to extend
the results of[13] is that the structureequations (1)can be also understood in terms of
pseudo-Riemannian geometry: if, for instance,u(x, t) is a solution ofΞ = 0 such that
(ω2 ∧ω3)(u(x, t)) �= 0, thenω2 ⊗ω2 −ω3 ⊗ω3 determines a pseudo-Riemannian metric
of Gaussian curvature−1 on the domain ofu(x, t). Since two pseudo-Riemannian surfaces
of constant Gaussian curvature−1 are locally isometric, one expects a correspondence
theorem as in the Riemannian case.

Additional motivation for this paper—and for the consideration of pseudo-Riemannian
manifolds in the theory of equations of pseudo-spherical type—comes from the relation
between equations in this class and linear problems: as will be seen inSection 2, an equation
Ξ = 0 of pseudo-spherical type is the integrability condition of ansl(2,R)-valued linear
problemvx = Xv, vt = Tv. It follows that[5,7,9] if u(x, t) : M ⊆ R2 → R is a solution
of Ξ = 0, the matrix valued one-form

Ω(u(x, t)) = X(u(x, t))dx + T (u(x, t))dt (2)

is ansl(2,R) connection one-form on the trivial bundleM×SL(2,R)whose curvatureΘ =
dΩ(u(x, t))−Ω(u(x, t))∧Ω(u(x, t)) vanishes identically. Conversely, if the connection
form (2) satisfiesΘ = 0 wheneveru(x, t) : M ⊆ R2 → R is a solution ofΞ = 0, the
structure of a Riemannian surface of Gaussian curvature−1 onM arises as a consequence
of “splitting” the one-formΩ(u(x, t)), and identifying a part of this splitting with a moving
coframe onM. (Chamseddine and Wyler[3], for instance, use this process in their gauge
formulation of dilaton gravity in two dimensions). Adifferentsplitting ofΩ(u(x, t)) will
yield, instead, apseudo-Riemannianstructure onM.

Now, from this point of view, Kamran and Tenenblat’s result[13] holds because the
Poincaré metric on the upper half plane determines astandard“undressed”[9] sl(2,R) flat
connection one-form on (an open subset of)R2 × SL(2,R), Ω0 say,and for any equation
Ξ = 0 of pseudo-spherical type one can find a (local) diffeomorphismΨ : M → R2

and anSO(2)-valued gauge transformation between the connectionΩ(u(x, t)) defined in
(2) andΨ ∗Ω0 (see[13] andSection 3). It is then very natural to expect that consideration
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of pseudo-Riemannian metrics on (open subsets of)R2, their undressed connection forms,
andSO(1,1)-valued gauge transformations, will give rise todifferentgeneralized Bäcklund
correspondences.

The second goal of this paper is to contribute to the classification of equations of
pseudo-spherical type, a question of intrinsic geometrical interest. A complete description
of evolution equationsut = K(x, t, u, ux, . . . , uxk ) which are “strictly pseudo-spherical”
is presented inSection 4, where strictly pseudo-spherical equations are also rigorously in-
troduced. The theorems in this section generalize the classification results known up to now
[4,13,19]. It has been decided to report on this material here because gauge transformations
also appear in this context. This time, they are used to simplify the analysis made in the
articles mentioned above.

Standard notions of formal differential geometry[14,16]will be used throughout. Thus,
a trivial bundleE given locally by(x, t, u) �→ (x, t) will be fixed once and for all, and a
scalar differential equationΞ = 0 in two independent variablesx, t , will be often identified
with a subbundleS∞ of the infinite jet bundleJ∞E of E (see[14]). The following facts
[14,16]will be also needed below:

(a) Local solutions ofΞ = 0 correspond to local holonomic sectionsj∞(s) of S∞, in
which s : (x, t) �→ (x, t, u(x, t)) is a local section ofE.

(b) The horizontal exterior derivative operatordH acts on one-formsω = Adx + B dt on
J∞E (resp.S∞) dHω by means ofdHf = Dxf dx+Dt f dt anddH (dx) = dH (dt) =
0, in which Dx , Dt are the total derivatives operators onJ∞E (resp.S∞).

(c) The operatordH satisfies the identity

d((j∞(s))∗ω) = (j∞(s))∗(dHω) (3)

for every local sectionj∞(s) of J∞E (resp. holonomic sectionj∞(s) of S∞).

2. Equations describing pseudo-spherical surfaces

The following structure is the point of departure for this paper.

Definition 1. A differential equationΞ(x, t, u, . . . , uxmtn) = 0 describes pseudo-spherical
surfaces (or, it is of pseudo-spherical type) if there exist smooth functionsfij (i = 1,2,3; j =
1,2) onJ∞E such that the pull-back of the one-formsωi = fi1 dx + fi2 dt by local solu-
tionsu(x, t) of Ξ = 0, ω̄i say, satisfy the structure equations

dω̄1 = ω̄3 ∧ ω̄2, dω̄2 = ω̄1 ∧ ω̄3, dω̄3 = ω̄1 ∧ ω̄2. (4)

The trivial case of all functionsfij depending only on the independent variablesx, t

is excluded from the considerations below. Also, the expression “PSS equation” will be
sometimes utilized as an abbreviation of the phrase “equation describing pseudo-spherical
surfaces”.

Definition 1was introduced in 1986 by Chern and Tenenblat[4], motivated by Sasaki’s
[23] observation that equations integrable via the Ablowitz, Kaup, Newell, and Segur
(AKNS) scattering/inverse scattering method describe pseudo-spherical surfaces whenever
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their associated linear problems are real. One can study classical Bäcklund transformations,
symmetries, and conservation laws of equations of pseudo-spherical type by geometrical
means ([1,4,19–21,24]and references therein), and one can also effectively classify them,
as it will be shown inSection 4(see also[4,13,19,22,24]and references therein).

Example 1. A classical example of PSS equation—besides the sine-Gordon equation
[8,24]—is the ubiquitous KdV equationut = uxxx + uux : it describes pseudo-spherical
surfaces with associated one-forms

ω1 = (1 − u)dx + (−uxx + ηux − η2u − 1
3u

2 + η2 − 2
9u + 5

9)dt, (5)

ω2 = η dx + (η3 + 1
3ηu − 1

3ux + 5
9η)dt, (6)

ω3 = (2
3 − u)dx + (−uxx + ηux − η2u − 1

3u
2 + 2

3η
2 − 1

3u + 10
27)dt, (7)

in whichη is an arbitrary real parameter.

The interpretation ofDefinition 1in terms of differential geometry of surfaces is based
on the following genericity notions.

Definition 2. Let Ξ = 0 be an equation describing pseudo-spherical surfaces with asso-
ciated one-formsωi , i = 1,2,3. A solutionj∞(s) of Ξ = 0 will be called I-generic
if (j∞(s))∗(ω3 ∧ ω2) �= 0; II-generic if (j∞(s))∗(ω1 ∧ ω3) �= 0; and III-generic if
(j∞(s))∗(ω1 ∧ ω2) �= 0.

For instance,u(x, t) = x + t is a I- and III-generic solution of the PSS equationut =
uxx + ux with associated one-formsω1 = udx + ux dt , ω2 = dx, andω3 = udx + ux dt ,
but it is not II-generic. On the other hand, it is II-generic if one considers, instead of the
formsωi , the associated one-formsω̂1 = ω2, ω̂2 = −ω1, andω̂3 = ω3.

Proposition 1. LetΞ = 0 be a PSS equation with associated one-formsωi , i = 1,2,3,
and lets : (x, t) �→ (x, t, u(x, t)) be a local section of E. Then,

(a) If j∞(s) is a I-generic solution ofΞ = 0, the one-formsσ1 = j∞(s)∗ω2 andσ2 =
j∞(s)∗ω3 determine a Lorentzian metric of constant Gaussian curvatureK = −1 on
the domain S ofu(x, t), with connection one-form given byσ12 = j∞(s)∗ω1.

(b) If j∞(s) is a II-generic solution ofΞ = 0, the one-formsσ1 = j∞(s)∗ω1 andσ2 =
−j∞(s)∗ω3 determine a Lorentzian metric of constant Gaussian curvatureK = −1
on the domain S ofu(x, t), with connection one-form given byσ12 = j∞(s)∗ω2.

(c) If j∞(s) is a III-generic solution ofΞ = 0, the one-formsσ1 = j∞(s)∗ω1 andσ2 =
j∞(s)∗ω2 determine a Riemannian metric of constant Gaussian curvatureK = −1 on
the domain S ofu(x, t), with connection one-form given byσ12 = j∞(s)∗ω3.

Proof. The structure equations of a surfaceS with metric ds2 = ε1(σ
1)2 + ε2(σ

2)2 (εi =
±1) and connection one-formσ12 are[24]:

dσ 1 = ε1σ12 ∧ σ 2, dσ 2 = ε2σ
1 ∧ σ12, dσ12 = −Kε1ε2σ

1 ∧ σ 2, (8)
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in whichK is the Gaussian curvature ofS. One can easily check that, because ofEqs. (4),
the one-forms defined in (a) satisfyEq. (8)with ε1 = 1,ε2 = K = −1. The fact thatj∞(s)

is I-generic implies that{j∞(s)∗ω2, j∞(s)∗ω3} is a well-defined local moving coframe on
the domainS of u(x, t).

In the same way, ifj∞(s) is II-generic, one sees that the one-forms defined in (b) satisfy
(8) with the same choices ofε1, ε2,K, and that{j∞(s)∗ω1,−j∞(s)∗ω3} is a well-defined
local moving coframe onS.

Finally, Eqs. (4)are identical toEqs. (8)if one takesε1 = ε2 = 1 andK = −1.
Thus, ifj∞(s) is III-generic, the domain ofu(x, t) possesses the structure of a Riemannian
pseudo-spherical surface equipped with the moving coframe{j∞(s)∗ω1, j∞(s)∗ω2} and
corresponding connection formj∞(s)∗ω3. �

Remark 1. If j∞(s) is III-generic, say,Definition 1 implies that the graph ofj∞(s) is
a submanifold ofS∞ possessing the structure of a pseudo-spherical surface with metric
and connection form given in the(x, t) coordinates by(ω̄1)2 + (ω̄2)2 andω̄3, respectively,
in which ω̄i := (j∞(s))∗ωi , i = 1,2,3. This point of view is useful when studying
(generalized) symmetries of equations of pseudo-spherical type[21].

Proposition 1motivates the following definition, which will be used inSection 3.

Definition 3. LetΞ = 0 be an equation of pseudo-spherical type with associated one-forms
ωi , i = 1,2,3. Then, (a)Ξ = 0 describes Riemannian pseudo-spherical surfaces ifω1 ∧
ω2 �≡ 0; (b)Ξ = 0 describes Lorentzian pseudo-spherical surfaces of type I ifω2∧ω3 �≡ 0;
and (c)Ξ = 0 describes Lorentzian pseudo-spherical surfaces of type II ifω1 ∧ ω3 �≡ 0.

Now consider the invariance properties of the structureequations (4). The following
proposition holds.

Proposition 2. Letωi , i = 1,2,3, be one-forms onJ∞E. The structure equations

dHω
1 = ω3 ∧ ω2, dHω

2 = ω1 ∧ ω3, dHω
3 = ω1 ∧ ω2, (9)

are invariant under the transformations

ω̂1 = ω1 cosρ + ω2 sinρ, ω̂2 = −ω1 sinρ + ω2 cosρ,

ω̂3 = ω3 + dHρ, (10)

ω̂1 = ω1 coshρ − ω3 sinhρ, ω̂2 = ω2 + dHρ,

ω̂3 = −ω1 sinhρ + ω3 coshρ, (11)

ω̂1 = ω1 + dHρ, ω̂2 = ω2 coshρ + ω3 sinhρ,

ω̂3 = ω2 sinhρ + ω3 coshρ, (12)

in whichρ is any smooth function onJ∞E.

Let Ξ = 0 be a PSS equation with associated one-formsωi , i = 1,2,3, and let
j∞(s) be a solution ofΞ = 0. It follows from Eq. (3) and Propositions 1 and 2that
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if j∞(s) is III-generic, the pull-back of(10) by j∞(s) is simply the transformation in-
duced on the one-formsj∞(s)∗ωi by a rotation of the moving orthonormal frame dual to
the coframe{j∞(s)∗ω1, j∞(s)∗ω2}. Analogously, ifj∞(s) is II-generic the pull-back of
(11) by j∞(s) corresponds to a Lorentz boost of the moving frame dual to the coframe
{j∞(s)∗ω1,−j∞(s)∗ω3}, and ifj∞(s) is I-generic the pull-back of(12) by j∞(s) corre-
sponds to a Lorentz boost of the frame dual to{j∞(s)∗ω2, j∞(s)∗ω3}.

Remark 2. A very interesting analysis of the invariance properties of (pseudo-)Riemannian
surfaces of constant Gaussian curvature, and their relation with classical Bäcklund trans-
formations, has been made by Crampin et al. in[6].

This section ends with an analysis of the close connection between equations of pseudo-
spherical type and linear problems. It allows one to interpret(10)–(12)in terms of gauge
transformations and, as already anticipated inSection 1, it helps to explain the appearance
of pseudo-Riemannian manifolds in the theory.

Proposition 3. Let Ξ = 0 be an equation of pseudo-spherical type with associated
one-formsωi , i = 1,2,3. The equationΞ = 0 is the integrability condition of the
sl(2,R)-valued linear problemdv = Ωv, in whichΩ is the one-form

Ω = 1

2

(
ω2 ω1 − ω3

ω1 + ω3 −ω2

)
, (13)

i.e., dΩ = Ω ∧ Ω wheneveru(x, t) is a local solution ofΞ = 0.

Thus, in the terminology of Crampin et al.[7], the one-formΩ(u(x, t)) determines a
“soliton connection” (see also[5,9]).

Example 2. Let ρ be a function onJ∞E, u(x, t) be a solution ofΞ = 0, and setρ̂ =
ρ(u(x, t)). The gauge transformationΩ(u(x, t)) �→ AΩ(u(x, t))A−1 + dAA−1, in which
Ω(u(x, t)) is defined by(13)and

A =
(

cosh(1
2ρ̂) sinh(1

2ρ̂)

sinh(1
2ρ̂) cosh(1

2ρ̂)

)
,

is precisely the pull-back byu(x, t) of transformation(12).

The choice(13) is motivated by the relation between the one-formsωi , i = 1,2,3,
associated to a PSS equationΞ = 0, and the Maurer–Cartan structure equations ofSL(2,R).

LetXA, A = 1,2,3, be a basis for the 2× 2 matrix representation ofsl(2,R),

X1 = 1

2

(
0 1

−1 0

)
, X2 = 1

2

(
0 1

1 0

)
, X3 = 1

2

(
1 0

0 −1

)
. (14)

Since [X1, X2] = X3, [X2, X3] = −X1, [X3, X1] = X2, the non-zero structure constants
CI

AB areC3
12 = 1,C1

23 = −1,C2
31 = 1. LetµA,A = 1,2,3, be the basis of the right invariant
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Maurer–Cartan forms ofSL(2,R) dual to {X1, X2, X3}. The Maurer–Cartan equations
dµI = ∑

A<B CI
ABµ

A ∧ µB read

dµ1 = −µ2 ∧ µ3, dµ2 = −µ1 ∧ µ3, dµ3 = µ1 ∧ µ2, (15)

and it follows that thesl(2,R)-valued one-formΩ̂ = µ1X1 + µ2X2 + µ3X3, satisfies the
zero curvature equation d̂Ω = Ω̂ ∧ Ω̂. One now proves the following lemma.

Lemma 1. LetΞ = 0 be a PSS equation with associated one-formsωi , and letu(x, t) be
a solution ofΞ = 0 with domain M. For eachp ∈ M andg ∈ SL(2,R), there exists a
smooth mapF : U ⊆ M → SL(2,R), in which U is open andp ∈ U , such thatF(p) = g

and

ω1(u(x, t)) = F ∗(µ2), ω2(u(x, t)) = F ∗(µ3), ω3(u(x, t)) = −F ∗(µ1).

(16)

Thus, locally, the one-formΩ defined in(13)satisfiesΩ(u(x, t)) = F ∗Ω̂.

Proof. Letπ1,π2 be the projections fromM×SL(2,R) ontoM andSL(2,R), respectively.
Setω̄i = π∗

1ω
i(u(x, t)), µ̄i = π∗

2µ
i , i = 1,2,3, and consider the idealI of differential

forms onM × SL(2,R) generated by the one-formsµ̄1 + ω̄3, µ̄2 − ω̄1, andµ̄3 − ω̄2. The
structureequations (4) and (15)yield

d(µ̄3 − ω̄2) = µ̄1 ∧ (µ̄2 − ω̄1) − ω̄1 ∧ (ω̄3 + µ̄1),

d(µ̄2 − ω̄1) = −µ̄1 ∧ (µ̄3 − ω̄2) + ω̄2 ∧ (ω̄3 + µ̄1),

d(µ̄1 + ω̄3) = −µ̄2 ∧ (µ̄3 − ω̄2) − ω̄2 ∧ (ω̄1 − µ̄2),

and thereforeI is closed under exterior differentiation. Since the Maurer–Cartan formsµi

are linearly independent, the Frobenius theorem implies that there exists a unique maximal
integral manifold ofI through(p, g), and one can check (see[25, Theorem 2.34]) that this
manifold is (locally) the graph of a functionF satisfyingF(p) = g and(16). �

Conversely, assume now that there exists a linear problem

∂v

∂x
= Xv,

∂v

∂t
= Tv, (17)

in whichX,T aresl(2,R)-valued functions onJ∞E, such that the zero curvature condition

∂X

∂t
− ∂T

∂x
+ [X, T ] = 0 (18)

holds wheneveru(x, t) is a solution of the equationΞ = 0. SetΩ = X dx+T dt , and write
Ω in the basisXA given by(14)asΩ = eA1 XA dx+ eA2 XA dt . DefineσA = eA1 dx+ eA2 dt ,
A = 1,2,3, i.e.,

σ 1 = (−U21 + U12)dx + (−V21 + V12)dt, σ 2 = (U21+U12)dx + (V21+V12)dt,

σ 3 = 2U11 dx + 2V11 dt, (19)
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in whichX = (Uαβ), T = (Vαβ). Eq. (18)implies that

dσ 1 = −σ 2 ∧ σ 3, dσ 2 = −σ 1 ∧ σ 3, dσ 3 = σ 1 ∧ σ 2 (20)

wheneveru(x, t) is a solution ofΞ = 0. One obtains different metric structures on the do-
main of a local solutionu(x, t)ofΞ=0 by choosing as connection form either−σ 1(u(x, t)),
σ 2(u(x, t)), or σ 3(u(x, t)). This is the “splitting” result anticipated inSection 1.

Proposition 4. Assume that the equationΞ = 0 is the integrability condition of an sl(2,R)

valued linear problemdv = Ωv, in whichΩ = X dx + T dt , and consider the one-forms
σ i , i = 1,2,3, given by(19). Then,

(a) The one-formsω1 = σ 2, ω2 = σ 3, andω3 = −σ 1 satisfy the structure equations of a
Riemannian surface of Gaussian curvature−1wheneveru(x, t) is a solution ofΞ = 0.
In particular, the equationΞ = 0 is of pseudo-spherical type.

(b) The one-formsω1 = σ 3, ω2 = −σ 1, andω3 = σ 2 satisfy the structure equations of a
Lorentzian surface of Gaussian curvature−1 wheneveru(x, t) is a solution ofΞ = 0.

(c) The one-formsω1 = σ 2, ω2 = σ 1, andω3 = σ 3 satisfy the structure equations of a
Lorentzian surface of Gaussian curvature−1 wheneveru(x, t) is a solution ofΞ = 0.

Remark 3. Proposition 4follows from the structureequations (8) and (20). Note that it
does not exhaust the metric structures one can impose onM starting from(17) and (18),
essentially becauseSL(2,R) appears also as isometry group of Lorentzian surfaces of pos-
itive constant Gaussian curvature. For instance, one can check thatω1 = −σ 1, ω2 = σ 2,
ω3 = −σ 3 satisfy the structure equations of a Lorentzian surface of constant Gaussian cur-
vature+1 wheneveru(x, t) is a solution ofΞ = 0. This observation will not be considered
further here, since it does not yield new correspondence theorems. However, it may be of
some physical interest (see[3,6,11]).

3. Correspondence theorems for PSS equations

Three correspondence theorems between appropriately generic solutions of scalar PSS
equationsΞ = 0 andΞ̂ = 0, are proved in this section. Pull-backs of one-formsω by
solutions of a PSS equation are denoted again byω, no confusion should arise. Also, the
space of independent variables of the equationsΞ(x, t, u, . . . ) = 0 andΞ̂(x̂, t̂ , û, . . . ) = 0
are denoted byM andM̂, respectively.

Remark 4. Suppose that one wishes to find a solutionû(x̂, t̂ ) of the PSS equation̂Ξ = 0
starting from a solutionu(x, t) of the PSS equationΞ = 0. It will be always assumed that
there exist one-formŝωi

0, i = 1,2,3, associated tôΞ = 0 such that this equation is not only
sufficient but also necessary for the structureequation (4)to be satisfied. Such one-forms
will be called target one-forms associated toΞ̂ = 0 (seeSection 4for an example).

Lemma 2. LetΞ(x, t, u, . . . ) = 0 be a differential equation describing pseudo-spherical
surfaces. There exists a gauge in which the one-formsωi = fi1 dx + fi2 dt associated to
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Ξ = 0 satisfyωi = udx + β dt for at least one index i, 1 ≤ i ≤ 3. Moreover, one can
always choose associated one-formsωi such thatω1 = udx + β dt .

Proof. Letωi = fi1 dx+fi2 dt , i = 1,2,3, be one-forms associated with the PSS equation
Ξ = 0. One can always assume thatf11 = 0. In fact, if f21 = 0, one simply rotates the
coframe using transformation(10) with ρ = π/2 to obtain associated one-formsω̂i =
f̂i1 dx + f̂i2 dt satisfying f̂11 = 0. If f21 �= 0, one applies transformation(10) with
ρ = arctan(−f11/f21) to find againf̂11 = 0.

Assume then thatωi = fi1 dx + fi2 dt , i = 1,2,3, satisfyf11 = 0. There are three
cases. First, iff31 �= 0, one applies transformation(11) with ρ = arcsinh(−u/f31) to
find new associated one-forms witĥf11 = u. Second, iff31 = 0 butf21 �= 0, one uses
transformation(12)with ρ = arcsinh(−u/f21) to obtainf̂31 = u. Third, if f31 = f21 = 0,
one uses(11) to find new associated one-forms witĥf11 = f̂31 = 0 andf̂21 �= 0, and
proceed as in the second case.

The last assertion of the lemma is trivial if the construction above yields eitherf̂11 = u

or f̂21 = u. Suppose then that the equationΞ = 0 has associated one-formsωi satisfying
ω3 = udx+β dt . Reasoning as in the first paragraph of this proof, one gets new associated
one-formsω̂i satisfying either

f̂11 = 0 and f̂31 = u, or f̂11 = 0 and f̂31 = u + Dx

(
arctan

(
−f11

f21

))
.

In any of these two caseŝf31 �= 0, and therefore, reasoning as in the second paragraph, one
can find new one-forms,̂ωi

new say, satisfyingf̂11 new= u, as claimed. �

The first correspondence result of this section is a slight generalization of Kamran and
Tenenblat’s theorem[13].

Theorem 1. LetΞ(x, t, u, . . . ) = 0 andΞ̂(x̂, t̂ , û, . . . ) = 0 be two scalar equations de-
scribing Riemannian pseudo-spherical surfaces. Any III-generic solutionu(x, t) of
Ξ(x, t, u, . . . ) = 0 determines a III-generic solution̂u(x̂, t̂) of Ξ̂(x̂, t̂ , û, . . . ) = 0.

Proof. Choose associated one-formsωi , i = 1,2,3, ofΞ = 0 and letω̂i
0, i = 1,2,3, be

target one-forms associated to the PSS equationΞ̂ = 0. Apply Lemma 2to find one-forms
ω̂i = f̂i1 dx̂ + f̂i2 dt̂ associated tôΞ = 0 such thatω̂1 = ûdx̂ + β dt̂ for some function
β depending on̂u and a finite number of its derivatives. Following Kamran and Tenenblat
[13], one obtains the formula

û ◦ Φ = 1

J

[
( cosθf11 + sinθf21)

∂ψ

∂t
− ( cosθf12 + sinθf22)

∂ψ

∂x

]
, (21)

in whichΦ(x, t) = (ϕ(x, t), ψ(x, t)) is a local diffeomorphism with JacobianJ , and the
functionsθ(x, t), ϕ(x, t), andψ(x, t) are smooth solutions of the system of equations

(Φ∗f̂21)
∂ϕ

∂x
+ (Φ∗f̂22)

∂ψ

∂x
= − sinθf11 + cosθf21, (22)
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(Φ∗f̂21)
∂ϕ

∂t
+ (Φ∗f̂22)

∂ψ

∂t
= − sinθf12 + cosθf22, (23)

(Φ∗f̂31)
∂ϕ

∂x
+ (Φ∗f̂32)

∂ψ

∂x
= f31 + ∂θ

∂x
, (24)

(Φ∗f̂31)
∂ϕ

∂t
+ (Φ∗f̂32)

∂ψ

∂t
= f32 + ∂θ

∂t
, (25)

−(Φ∗f̂12)J = ( cosθf11 + sinθf21)
∂ϕ

∂t
− ( cosθf12 + sinθf22)

∂ϕ

∂x
, (26)

where the pull-backs of̂u and its derivatives with respect tôx, t̂ appearing in the functions
(Φ∗f̂ij )(x, t), i = 1,2,3,j = 1,2, have been evaluated by means of(21)and its derivatives.
Eq. (21)determines a solution̂u(x̂, t̂) of Ξ̂(x̂, t̂ , û, . . . ) = 0. A particularly clear way to
see this is the following: consider the connectionsΩ̂ andΩ̂0 determined by the one-forms
ω̂i andω̂i

0, respectively. By construction, there exists anSL(2,R)-valued matrixA whose
entries are smooth functions onJ∞E such that

Ω̂ = AΩ̂0A
−1 + dAA−1, Θ̂ = AΘ̂0A

−1,

in which Θ̂ andΘ̂0 are the curvatures of̂Ω andΩ̂0, respectively. The fact thatΦ(x, t) is a
local diffeomorphism, together withEqs. (21)–(26), implies the structure equations

dω̂1 = ω̂3 ∧ ω̂2, dω̂2 = ω̂1 ∧ ω̂3, dω̂3 = ω̂1 ∧ ω̂2, (27)

so thatΘ̂ = 0. It follows thatΘ̂0 = 0, and, therefore, the target one-formsω̂i
0 also satisfy

(27). This means that(21)determines a solution of̂Ξ = 0, as claimed. That̂u is III-generic
(with respect to the associated one-formsω̂i) follows from the equationΦ∗(ω̂1 ∧ ω̂2) =
ω1 ∧ ω2, an easy consequence of(22)–(26). �

Remark 5. Kamran and Tenenblat’s theorem was proved in[13] under the hypothesis
(notation as in the proof ofTheorem 1) f̂ij = Ĝ(û) andĜ′(û) �= 0 for at least onef̂ij ,
1 ≤ i ≤ 3, 1 ≤ j ≤ 2. Lemma 2and the above argument show that one does not need to
make this a priori assumption.

Example 3 (Non-linear superposition of sine-Gordon solutions). The sine-Gordon equation

∂2θ

∂u2
− ∂2θ

∂v2
= sinθ cosθ (28)

describes pseudo-spherical surfaces with associated functions

f11 = 0, f12 = sinθ, f21 = − cosθ, f22 = 0,

f31 = θv, f32 = θu. (29)

Letθ(u, v)be a III-generic solution ofEq. (28).Theorem 1allows one to obtain the traveling
wave solution of Burgers equation from(28) and (29)as follows.
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Consider a functionω(u, v) determined by the completely integrable Pfaffian system

θv + ωu = − sinω cosθ, θu + ωv = cosω sinθ. (30)

The functionω(u, v) is also a solution ofEq. (28); in fact,Eqs. (30)are simply the equa-
tions determining the Bianchi transform of the pseudo-spherical surface described by the
one-forms(29) [8]. Now introduce potentialsξ(u, v) andζ(u, v) thus

dξ = −( cosω cosθ du + sinω sinθ dv), (31)

dζ = exp(ξ)( cosθ sinω du − sinθ cosω dv). (32)

The functionsξ andζ are well-defined because of(30). Note also that the mapχ : (u, v) �→
(ζ(u, v), ξ(u, v)) is a local diffeomorphism becauseθ(u, v) is III-generic, and that

χ∗(dξ2 + exp(−2ξ)dζ 2) = cos2θ du2 + sin2θ dv2.

Thus,χ determines a local isometry between the pseudo-spherical surface described by the
one-forms(29)and the standard pseudo-sphere.

Now, Burgers’ equation

ût̂ = ûx̂x̂ − 2ûûx̂ (33)

describes pseudo-spherical surfaces with associated functions

f̂11 = û, f̂12 = −û2 + ûx̂ , f̂21 = 1, f̂22 = −û,

f̂31 = 1, f̂32 = −û. (34)

Define the transformation
x̂ = ϕ(u, v) = 1 − ζ(u, v) − exp(ξ(u, v)), (35)

t̂ = ψ(u, v) = ln |1 − exp(ξ(u, v))| − 1 + ζ(u, v) + exp(ξ(u, v)). (36)

One can check that, if̃θ = ω(u, v) − π/2, the mapΦ : (u, v) �→ (x̂, t̂) given by(35)
and (36)is a local diffeomorphism which satisfies the system ofEqs. (22)–(26)(with “θ ”
replaced by “̃θ ”). Substituting intoEq. (21)(again, with “θ ”, replaced by “̃θ ”) one finds
that the pull-back of̂u(x̂, t̂) byΦ is

û ◦ Φ = 1 − exp(ξ(u, v))

exp(ξ(u, v))
,

and, therefore, one finally obtains

û(x̂, t̂ ) = exp(x̂ + t̂ )

1 − exp(x̂ + t̂ )
, (37)

the traveling wave solution ofEq. (33).

The crucialEqs. (22)–(26)appearing in the proof of the last theorem were found in[13]
with the aid of transformation(10) of Proposition 2. Transformations(11) and (12)are
now used to find correspondence results analogous toTheorem 1, this time by considering
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equations describing Lorentzian pseudo-spherical surfaces of types I and II. The first such
(Theorem 3) follows fromTheorem 2andLemma 3.

Theorem 2. LetΞ(x, t, u, . . . ) = 0 andΞ̂(x̂, t̂ , û, . . . ) = 0 be two equations describing
Lorentzian pseudo-spherical surfaces of type II with associated one-formsωi = fi1 dx +
fi2 dt andω̂i = f̂i1 dx̂+f̂i2 dt̂ , i = 1,2,3,respectively. For any II-generic solutionsu(x, t)
of Ξ = 0 and û(x̂, t̂ ) of Ξ̂ = 0, there exist a local diffeomorphismΥ : V → V̂ , in which
V andV̂ are open subsets of the domains ofu(x, t) andû(x̂, t̂ ), respectively, and a smooth
functionµ : V → R, such that the pull-backs ofωi byu(x, t), and ofω̂i by û(x̂, t̂ ), satisfy

Υ ∗ω̂1 = ω1 coshµ − ω3 sinhµ, (38)

Υ ∗ω̂2 = ω2 + dµ, (39)

Υ ∗ω̂3 = −ω1 sinhµ + ω3 coshµ. (40)

Proof. Define one-formŝσ i , i = 1,2,3, on an open subset̂W of V̂ by

σ̂ 1 = 1

x̂
dx̂, σ̂ 2 = 1

x̂
dt̂ , σ̂ 3 = 1

x̂
dt̂ . (41)

The structureequations (8)with ε1 = 1 andε2 = −1 imply that(σ̂ 1)2 − (σ̂ 2)2 is a Lorentz
metric of constant Gaussian curvatureK = −1 onŴ , and that̂σ 3 is the connection one-form
corresponding to the moving coframe{σ̂ 1, σ̂ 2}. Let u(x, t) be a II-generic solution of the
equationΞ = 0, and consider the pull-backs of the one-formsωi , i = 1,2,3, byu(x, t).
Motivated byPropositions 1 and 2, one claims that there exists a functionΓ : V → Ŵ ,
Γ (x, t) = (α(x, t), β(x, t)), and a real-valued functionθ(x, t) onV such that

Γ ∗σ̂ 1 = ω1 coshθ − ω3 sinhθ, (42)

Γ ∗σ̂ 2 = ω1 sinhθ − ω3 coshθ, (43)

Γ ∗σ̂ 3 = ω2 + dθ. (44)

Indeed, note that

Γ ∗σ̂ 1 = 1

α
dα, Γ ∗σ̂ 2 = 1

α
dβ, Γ ∗σ̂ 3 = 1

α
dβ,

so thatEqs. (42)–(44)are equivalent to the Pfaffian system

αx = α(f11 coshθ − f31 sinhθ), αt = α(f12 coshθ − f32 sinhθ), (45)

βx = α(f11 sinhθ − f31 coshθ), βt = α(f12 sinhθ − f32 coshθ), (46)

θx = f11 sinhθ − f31 coshθ − f21, θt = f12 sinhθ − f32 coshθ − f22. (47)

It is not difficult to see that this system is completely integrable forα(x, t), β(x, t) and
θ(x, t), since the pulled-back one-formsωi , i = 1,2,3, satisfy the structure equations of a
pseudo-spherical surface. Moreover,Γ = (α, β) is a local diffeomorphism, since

αxβt − αtβx = −α2(f11f32 − f31f12),

andf11f32 − f31f12 �= 0 becauseu(x, t) is a II-generic solution ofΞ = 0.
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Now, one can use the same argument as above to find a local diffeomorphismΓ̃ : V̂ → Ŵ

and a functioñθ : V̂ → R such that

Γ̃ ∗σ̂ 1 = ω̂1 coshθ̃ − ω̂3 sinhθ̃ , Γ̃ ∗σ̂ 2 = ω̂1 sinhθ̃ − ω̂3 coshθ̃ ,

Γ̃ ∗σ̂ 3 = ω̂2 + dθ̃ .

It is then straightforward to check thatEqs. (38)–(40)are satisfied if one defines

Υ = Γ̃ −1 ◦ Γ, µ = θ − θ̃ ◦ Υ. �

In geometrical terms,Theorem 2says that there exists a local isometryΥ between the
Lorentzian surfaces(V , (ω1)2 − (−ω3)2) and (V̂ , (ω̂1)2 − (−ω̂3)2) determined by the
II-generic solutionsu(x, t) of Ξ = 0 and û(x̂, t̂ ) of Ξ̂ = 0, respectively, and thatΥ
preserves the moving frames{ω1,−ω3} and{ω̂1,−ω̂3} up to a Lorentz boost.

Next, one usesTheorem 2to construct a Bäcklund-like transformation fromu(x, t) to
û(x̂, t̂ ). For this, one needs the following lemma.

Lemma 3. LetΞ(x, t, u, . . . ) = 0 and Ξ̂(x̂, t̂ , û, . . . ) = 0 be two scalar equations de-
scribing Lorentzian pseudo-spherical surfaces of type II with associated one-formsωi =
fi1 dx + fi2 dt and ω̂i = f̂i1 dx̂ + f̂i2 dt̂ , i = 1,2,3, respectively, in whichf̂21 = û. Let
Υ (x, t) = (φ(x, t), ψ(x, t)) be a smooth map with JacobianJ = φxψt − φtψx from (an
open subset of) M to (an open subset of) M̂, and letµ be a smooth map from(an open subset
of ) M to R. The system of equations

(Υ ∗f̂11)φx + (Υ ∗f̂12) ψx = f11 coshµ − f31 sinhµ, (48)

(Υ ∗f̂11)φt + (Υ ∗f̂12)ψt = f12 coshµ − f32 sinhµ, (49)

J (Υ ∗f̂22) = −[φt (f21 + µx) − φx(f22 + µt)], (50)

(Υ ∗f̂31)φx + (Υ ∗f̂32)ψx = −f11 sinhµ + f31 coshµ, (51)

(Υ ∗f̂31)φt + (Υ ∗f̂32)ψt = −f12 sinhµ + f32 coshµ, (52)

in which the pull-backs of̂u and its derivatives with respect tôx, t̂ appearing in the functions
(Υ ∗f̂ij )(x, t) have been evaluated by means of the equation

û ◦ Υ = 1

J
(ψt (f21 + µx) − ψx(f22 + µt)), (53)

admits—wheneveru(x, t) is a II-generic solution ofΞ = 0—a local solutionφ(x, t),
ψ(x, t), µ(x, t) such thatΥ (x, t) = (φ(x, t), ψ(x, t)) is a local diffeomorphism.

Proof. In order to see thatEqs. (48)–(52)have local solutions with the properties listed
in the lemma, takeany II-generic solution ofΞ̂ = 0, û(x̂, t̂ ) say, and identify it with an
holonomic local sectionj∞(ŝ) of the equation manifold̂S∞ of Ξ̂ = 0. By Theorem 2,
there exist functionsφ, ψ andµ satisfying the first-order system of equations

((j∞(ŝ)∗f̂11) ◦ Υ )φx + ((j∞(ŝ)∗f̂12) ◦ Υ )ψx = f11 coshµ − f31 sinhµ, (54)

((j∞(ŝ)∗f̂11) ◦ Υ )φt + ((j∞(ŝ)∗f̂12) ◦ Υ )ψt = f12 coshµ − f32 sinhµ, (55)
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((j∞(ŝ)∗f̂31) ◦ Υ )φx + ((j∞(ŝ)∗f̂32) ◦ Υ )ψx = −f11 sinhµ + f31 coshµ, (56)

((j∞(ŝ)∗f̂31) ◦ Υ )φt + ((j∞(ŝ)∗f̂32) ◦ Υ )ψt = −f12 sinhµ + f32 coshµ, (57)

(û ◦ Υ )φx + ((j∞(ŝ)∗f̂22) ◦ Υ )ψx = f21 + µx, (58)

(û ◦ Υ )φt + ((j∞(ŝ)∗f̂22) ◦ Υ )ψt = f22 + µt , (59)

in whichΥ (x, t) = (φ(x, t), ψ(x, t)), and such thatΥ is a local diffeomorphism. These
functionsφ, ψ andµ also satisfy the system ofEqs. (48)–(52). Indeed,Eqs. (58) and (59)
can be considered as a linear system forû ◦ Υ and(j∞(ŝ)∗f̂22) ◦ Υ , and solution of this
system yieldsEq. (53)and

J [(j∞(ŝ)∗f̂22) ◦ Υ ] = −[φt (f21 + µx) − φx(f22 + µt)]. (60)

Now, letĝij , i = 1,2,3,j = 1,2, be the functions depending onx, t ,φ,ψ , and their deriva-
tives, which are obtained from̂fij by computing the pull-backsΥ ∗f̂ij as in the enunciate
of the lemma. Then, on the solutionsφ(x, t), ψ(x, t), µ(x, t) of the system(54)–(59), one
has, for anyi andj ,

(ĝij )(x, t) = (j∞(ŝ)∗f̂ij ) ◦ Υ (x, t),

since on these functionsφ, ψ , µ, Eq. (53)is an identity.
Thus, the system(48)–(52)reduces to the first-order system(54)–(57) and (60), and the

result follows. �

Theorem 2andLemma 3allow one to prove the following correspondence result.

Theorem 3. Let Ξ(x, t, u, . . . ) = 0 and Ξ̂(x̂, t̂ , û, . . . ) = 0 be two scalar equations
describing Lorentzian pseudo-spherical surfaces of type II, and assume thatΞ = 0 has
associated one-formsωi = fi1 dx + fi2 dt , i = 1,2,3. Any II-generic solutionu(x, t) of
Ξ(x, t, u, . . . ) = 0 determines a II-generic solution̂u(x̂, t̂) of Ξ̂(x̂, t̂ , û, . . . ) = 0 by

û ◦ Υ = 1

J
(ψt (f21 + µx) − ψx(f22 + µt)), (61)

in whichΥ (x, t) = (φ(x, t), ψ(x, t)), andφ, ψ , µ are given by(48)–(52).

Proof. Let ω̂i
0, i = 1,2,3, be target one-forms associated toΞ̂ = 0. Applying a gauge

transformation as inLemma 2, one obtains one-formŝωi = f̂i1 + f̂i2 associated with
the equationΞ̂ = 0 such thatf̂21 = û. Fix a II-generic solutionu(x, t) of equation
Ξ(x, t, u, . . . ) = 0, and consider the system ofEqs. (48)–(52). By Lemma 3, this system
possesses local solutionsφ, ψ andµ such thatΥ = (φ, ψ) is a local diffeomorphism. One
then defineŝu ◦ Υ by Eq. (61), thereby obtaining a system of six equations equivalent to

Υ ∗ω̂1 = ω1 coshµ − ω3 sinhµ, (62)

Υ ∗ω̂2 = ω2 + dµ, (63)

Υ ∗ω̂3 = −ω1 sinhµ + ω3 coshµ. (64)
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SinceΥ is a local diffeomorphism, and the one-formsωi satisfy the structureequations
(4)of a pseudo-spherical surface, so do the one-formsω̂i . It follows that the target one-forms
ω̂i

0 satisfy

dω̂1
0 = ω̂3

0 ∧ ω̂2
0, dω̂2

0 = ω̂1
0 ∧ ω̂3

0, dω̂3
0 = ω̂1

0 ∧ ω̂2
0. (65)

This means that(61) determines a solution of̂Ξ = 0, as claimed. Finally, note that if one
multipliesEqs. (48) and (52), then multipliesEqs. (49) and (51), and subtract the results,
one obtains the identity

[(f̂11 ◦ Υ )(f̂32 ◦ Υ )− (f̂12 ◦ Υ )(f̂31◦Υ )][φxψt − φtψx ] = f11f32 − f12f31, (66)

so thatû(x̂, t̂ ) is a II-generic solution of the equation̂Ξ = 0. �

Example 4 (Straightening-out elliptic sine- and sinh-Gordon solutions). The elliptic sine-
Gordon equation

∂2θ

∂u2
+ ∂2θ

∂v2
= sinθ cosθ (67)

is usually considered in pseudo-Riemannian geometry (see for instance[6,11,17,24]). It
describes pseudo-spherical surfaces with associated functionsfij given by

f11 = cosθ, f12 = 0, f21 = θv, f22 = −θu,

f31 = 0, f32 = − sinθ. (68)

Let θ(u, v) be a II-generic solution of(67). The aim of this example is to show that one can
useTheorem 3to obtain a solution of the linear second-order equation

ût̂ = ûx̂x̂ + ûx̂ (69)

from (67) and (68).
First, consider a functionω(u, v) given by the completely integrable Pfaffian system

θv + ωu = cosθ sinhω, −θu + ωv = sinθ coshω. (70)

Note that the functionω(u, v) satisfies the equation

∂2ω

∂u2
+ ∂2ω

∂v2
= sinhω coshω, (71)

so thatEqs. (70)determine a Bäcklund-like transformation between the elliptic sine-Gordon
and the elliptic sinh-Gordon equations. The system(70) has been obtained here with the
aid of Eqs. (47)appearing in the proof ofTheorem 2, other derivations are in[6,17] (see
also[24] for a related result).

Usingθ andω, one introduces potentialsξ(u, v) andβ(u, v) thus

dξ = cosθ coshω du + sinθ sinhω dv, (72)

dβ = exp(ξ)( cosθ sinhω du + sinθ coshω dv). (73)

The functionsξ andβ are well-defined because of(67) and (70).
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Now, the linearEq. (69)describes pseudo-spherical surfaces with associated functions
f̂ij given by

f̂11 = 1, f̂12 = 0, f̂21 = û, f̂22 = ûx̂ ,

f̂31 = −û, f̂32 = −ûx̂ . (74)

Define the mapΥ : (u, v) → (x̂, t̂) by means of

x̂ = φ(u, v) = ξ(u, v), (75)

t̂ = ψ(u, v) = 1 − ξ(u, v) + β(u, v)exp(−ξ(u, v)). (76)

One can check thatΥ is a local diffeomorphism which satisfies the system ofEqs. (48)–(52)
if one setsµ(u, v) = ω(u, v). Formula(61) then yields

û ◦ Υ = 1 + β(u, v)exp(−ξ(u, v)),

and, therefore, one obtains the following solution of(69):

û(x̂, t̂ ) = x̂ + t̂ .

The correspondence results for equations describing Lorentzian pseudo-spherical sur-
faces of type I are stated below. Their proofs are modeled after the ones already given, and
are therefore omitted.

Instead ofTheorem 2one finds the following.

Theorem 4. LetΞ(x, t, u, . . . ) = 0 andΞ̂(x̂, t̂ , û, . . . ) = 0 be two equations describing
Lorentzian pseudo-spherical surfaces of type I with associated one-formsωi = fi1 dx +
fi2 dt andω̂i = f̂i1 dx̂+ f̂i2 dt̂ , i = 1,2,3,respectively. For any I-generic solutionsu(x, t)
of Ξ = 0 and û(x̂, t̂ ) of Ξ̂ = 0, there exist a local diffeomorphismΨ : V → V̂ , in which
V andV̂ are open subsets of the domains ofu(x, t) andû(x̂, t̂ ) , respectively, and a smooth
functionν : V → R, such that the pull-backs ofωi by u(x, t) and ofω̂i by û(x̂, t̂ ) satisfy

Ψ ∗ω̂1 = ω1 + dν, (77)

Ψ ∗ω̂2 = ω2 coshν + ω3 sinhν, (78)

Ψ ∗ω̂3 = ω2 sinhν + ω3 coshν. (79)

The technicalLemma 3now becomes the following.

Lemma 4. LetΞ(x, t, u, . . . ) = 0 and Ξ̂(x̂, t̂ , û, . . . ) = 0 be two scalar equations de-
scribing Lorentzian pseudo-spherical surfaces of type I with associated one-formsωi =
fi1 dx + fi2 dt and ω̂i = f̂i1 dx̂ + f̂i2 dt̂ , i = 1,2,3, respectively, in whichf̂11 = û. Let
Ψ (x, t) = (γ (x, t), δ(x, t)) be a smooth map with JacobianJ = γxδt −γt δx from(an open
subset of) M to (an open subset of) M̂, and letν be a smooth map from(an open subset of)
M to R. The system of equations

J (Ψ ∗f̂12) = −[γt (f11 + νx) − γx(f12 + νt )], (80)
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(Ψ ∗f̂21)γx + (Ψ ∗f̂22)δx = f21 coshν + f31 sinhν, (81)

(Ψ ∗f̂21)γt + (Ψ ∗f̂22)δt = f22 coshν + f32 sinhν, (82)

(Ψ ∗f̂31)γx + (Ψ ∗f̂32)δx = f21 sinhν + f31 coshν, (83)

(Ψ ∗f̂31)γt + (Ψ ∗f̂32)δt = f22 sinhν + f32 coshν, (84)

in which the pull-backs of̂u and its derivatives with respect tôx, t̂ appearing in the functions
(Ψ ∗f̂ij )(x, t) have been evaluated by means of the equation

û ◦ Ψ = 1

J
(δt (f11 + νx) − δx(f12 + νt )), (85)

admits—wheneveru(x, t) is a I-generic solution ofΞ = 0—a local solutionγ (x, t),
δ(x, t), ν(x, t) such thatΨ (x, t) = (γ (x, t), δ(x, t)) is a local diffeomorphism.

Finally, the transformation theorem corresponding to these results is as follows:

Theorem 5. Let Ξ(x, t, u, . . . ) = 0 and Ξ̂(x̂, t̂ , û, . . . ) = 0 be two scalar equations
describing Lorentzian pseudo-spherical surfaces of type I, and assume thatΞ = 0 has
associated one-formsωi = fi1 dx + fi2 dt , i = 1,2,3. Any I-generic solutionu(x, t) of
Ξ(x, t, u, . . . ) = 0, determines a I-generic solution̂u(x̂, t̂) of Ξ̂(x̂, t̂ , û, . . . ) = 0 by

û ◦ Ψ = 1

J
(δt (f11 + νx) − δx(f12 + νt )), (86)

in whichΨ (x, t) = (γ (x, t), δ(x, t)), andγ , δ, andν are given by(80)–(84).

Example 5 (Constructing solitary waves). The linear equation

ut = uxx + ux (87)

describes pseudo-spherical surfaces with associated functions

f11 = u, f12 = ux, f21 = −1, f22 = 0,

f31 = −u, f32 = −ux. (88)

The goal of this example is to determine a I-generic solitary wave solution of the elliptic
sine-Gordon equation

∂2û

∂x̂2
+ ∂2û

∂ t̂2
= sinû cosû (89)

from a I-generic solution of the linearEq. (87). To start with, note thatEq. (89)describes
pseudo-spherical surfaces with associated functions

f̂11 = ût̂ , f̂12 = −ûx̂ , f̂21 = − cosû, f̂22 = 0,

f̂31 = 0, f̂32 = − sinû. (90)

Interestingly, the associated functions(90) do notsatisfy the conditionf̂11 = û appearing
in Lemma 4. Of course, one can arrange this by applyingLemma 2, but it is not obvious
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that the resulting system ofEqs. (80)–(84)can then be solved in closed form, to obtain
an explicit solution of(89). A reasonable alternative is to suitably modifyLemma 4and
Theorem 5, and adapt them to the example at hand.

Lemma 4b. Let Ξ(x, t, u, . . . ) = 0 and Ξ̂(x̂, t̂ , û, . . . ) = 0 be two scalar equations
describing Lorentzian pseudo-spherical surfaces of type I with associated one-formsωi =
fi1 dx + fi2 dt and ω̂i = f̂i1 dx̂ + f̂i2 dt̂ , i = 1,2,3, respectively, in whichf̂21 = Ĝ(û),
Ĝ′ �= 0. LetΨ (x, t) = (γ (x, t), δ(x, t)) be a smooth map with JacobianJ = γxδt − γt δx
from (an open subset of) M to (an open subset of) M̂, and letν be a smooth map from(an
open subset of) M to R. The system of equations

(Ψ ∗f̂11)γx + (Ψ ∗f̂12)δx = f11 + νx, (91)

(Ψ ∗f̂11)γt + (Ψ ∗f̂12)δt = f12 + νt , (92)

−J (Ψ ∗f̂22) = γt (f21 coshν + f31 sinhν) − γx(f22 coshν + f32 sinhν), (93)

(Ψ ∗f̂31)γx + (Ψ ∗f̂32)δx = f21 sinhν + f31 coshν, (94)

(Ψ ∗f̂31)γt + (Ψ ∗f̂32)δt = f22 sinhν + f32 coshν, (95)

in which the pull-backs of̂u and its derivatives with respect tôx, t̂ appearing in the functions
(Ψ ∗f̂ij )(x, t) have been evaluated by means of the equation

Ĝ(û) ◦ Ψ = 1

J
(δt (f21 coshν + f31 sinhν) − δx(f22 coshν + f32 sinhν)), (96)

admits—wheneveru(x, t) is a I-generic solution ofΞ = 0—a local solutionγ (x, t),
δ(x, t), ν(x, t) such thatΨ (x, t) = (γ (x, t), δ(x, t)) is a local diffeomorphism.

Theorem 5b. Let Ξ(x, t, u, . . . ) = 0 and Ξ̂(x̂, t̂ , û, . . . ) = 0 be two scalar equations
describing Lorentzian pseudo-spherical surfaces of type I, and assume thatΞ = 0 has
associated one-formsωi = fi1 dx + fi2 dt , i = 1,2,3. Any I-generic solutionu(x, t)
of Ξ(x, t, u, . . . ) = 0, determines a I-generic solution̂u(x̂, t̂) of Ξ̂(x̂, t̂ , û, . . . ) = 0 by
means of

Ĝ(û) ◦ Ψ = 1

J
(δt (f21 coshν + f31 sinhν) − δx(f22 coshν + f32 sinhν)), (97)

in whichΨ (x, t) = (γ (x, t), δ(x, t)), andγ , δ, andν are given by(91)–(95).

One can now check that if one considers the I-generic solutionu(x, t) = x + t of the
linearEq. (87), a solution to the system of equations appearing inLemma 4bis the local
diffeomorphismΨ (x, t) = (γ (x, t), δ(x, t)) given by

x̂ = γ (x, t) = arccosh

(
e−x

(x + t)(−2 + x + t)

)
, (98)

t̂ = δ(x, t) = e−x(−1 + x + t)

(x + t)(−2 + x + t)
, ν = ln |2/(x + t) − 1|. (99)



386 E.G. Reyes / Journal of Geometry and Physics 45 (2003) 368–392

Formula(97)now yields

− cos(û ◦ Ψ ) = ex
√

e−2x − (x + t)2(−2 + x + t)2, (100)

and it follows, after invertingEqs. (98) and (99), thatû(x̂, t̂ ) is given by

û(x̂, t̂ ) = 2 arctan(ex̂ ). (101)

This is a solitary wave solution of the elliptic sine-Gordon equation.

Remark 6. The functionû given by(101) is not a “traveling” wave. The reason for this
is in the choice of associated functions(90): the speedv of the traveling wave solution of
the elliptic sine-Gordon equation enters in the formulae for associated functions(90) as a
parameter. The same parameter, in fact, which appears in the Bäcklund transformation for
Eq. (89)(see[15]). For simplicity, it has been chosenv = 0.

4. A description of evolutionary PSS equations

Kamran and Tenenblat[13] performed a general classification of evolutionary PSS equa-
tions of the typeut = K(u, ux, . . . , uxk ), assuming that their associated functionsfij

depend at most onu, ux, . . . , uxk . They did not consider explicitx/t dependence neither in
the associated one-forms nor in the equations themselves, however. Besides its geometrical
importance, one can argue that this is a natural generalization because of two reasons: first,
the analysis of second-order formally integrable equations carried out by Reyes[19] and
Foursov et al.[10] shows that evolution equations with no explicitx/t dependence may
well havex/t-dependent associated one-forms; second, there are interesting instances of
x/t-dependent equations which are the integrability condition of a one-parameter family
of sl(2,R)-valued linear problems, and which are not covered in the classification of PSS
equations obtained so far. For example, the “spectral parameter” of the auxiliary linear
problem may be a variable quantity, as in[2].

Evolutionary Riemannian PSS equations of the formut = K(x, t, u, ux, . . . , uxk ) are
classified here, under the working assumption that the equationut = K is encodedexactly
in the structure equations

dω1 = ω3 ∧ ω2, dω2 = ω1 ∧ ω3, dω3 = ω1 ∧ ω2, (102)

in which the one-formsωi , i = 1,2,3, are considered as differential forms on a manifold
J equipped with local coordinates(x, t, u, ux, uxx, . . . , uxk ). One formalizes this idea thus
[10,13].

Let ut = K(x, t, u, . . . , uxk ) be akth order evolution equation, and consider the differ-
ential idealIK generated by the two-forms

du ∧ dx + K(x, t, u, . . . , uxk )dx ∧ dt,

duxl ∧ dt − uxl+1 dx ∧ dt, 1 ≤ l ≤ k − 1,
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on the reducedkth order jet spaceJ with coordinatesx, t, u, ux, . . . , uxk , so that local
solutions ofut = K correspond to integral submanifolds of the exterior differential system
{IK,dx ∧ dt}. The idealIK will be called theequation idealof ut = K.

Definition 4. An evolution equationut = K(x, t, u, . . . , uk) is strictly pseudo-spherical
if there exist one-formsωi = fi1 dx +fi2 dt , i = 1,2,3, whose coefficientsfij are smooth
functions on the reducedkth order jet spaceJ , such that the two-forms

Ω1 = dω1 − ω3 ∧ ω2, Ω2 = dω2 − ω1 ∧ ω3, Ω3 = dω3 − ω1 ∧ ω2, (103)

generate the equation idealIK .

It follows that the evolution equationut = K is necessary and sufficient for the structure
equationsΩi = 0, i = 1,2,3, to hold (so that the one-formsωi , i = 1,2,3, appearing in
Definition 4are target one-forms forut = K), that is, the equation idealIK is algebraically
equivalent to a system of differential forms satisfying the pseudo-spherical structure equa-
tions if pulled back by local solutions ofut = K. Definition 4can be extended to other types
of equations (see for instance[12,18]) but it seems that no general intrinsic characterization
of strictly pseudo-spherical equations exists. In particular, it is not known whether there are
evolutionary PSS equations that are not strictly pseudo-spherical.

The following lemma shows that the functionsfij associated to strictly pseudo-spherical
equations are strongly constrained.

Lemma 5. Necessary and sufficient conditions for the equationut = K(x, t, u, ux, . . . ,

uxk ) to be strictly pseudo-spherical with associated functionsfij , are the following:

fi1,u
xl

= fi2,u
xk

= 0, 1 ≤ l ≤ k − 1, i = 1,2,3, (104)

f 2
11,u + f 2

21,u + f 2
31,u �= 0, (105)

−f11,t − f11,uK + f12,x +
k−1∑
l=0

f12,u
xl
uxl+1 − (f31f22 − f32f21) = 0, (106)

−f21,t − f21,uK + f22,x +
k−1∑
l=0

f22,u
xl
uxl+1 − (f11f32 − f12f31) = 0, (107)

−f31,t − f31,uK + f32,x +
k−1∑
l=0

f32,u
xl
uxl+1 − (f11f22 − f12f21) = 0. (108)

Moreover, ifut = K is strictly pseudo-spherical one can choose associated functionsfij

so thatf11,u �= 0.

Proof. Suppose thatut = K(x, t, u, ux, . . . , uxk ) is strictly pseudo-spherical with asso-
ciated one-formsωi = fi1 dx + fi2 dt . The structure equationsΩi = 0, in which the
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one-formsΩi are given by(103), imply the identities

−f11,t dx ∧ dt +
k∑

l=0

f11,u
xl

duxl ∧ dx + f12,x dx ∧ dt

+
k∑

l=0

f12,u
xl

duxl ∧ dt − (f31f22 − f32f21)dx ∧ dt = 0, (109)

−f21,t dx ∧ dt +
k∑

l=0

f21,u
xl

duxl ∧ dx + f22,x dx ∧ dt

+
k∑

l=0

f22,u
xl

duxl ∧ dt − (f11f32 − f12f11)dx ∧ dt = 0, (110)

−f31,t dx ∧ dt +
k∑

l=0

f31,u
xl

duxl ∧ dx + f32,x dx ∧ dt

+
k∑

l=0

f32,u
xl

duxl ∧ dt − (f11f22 − f12f21)dx ∧ dt = 0. (111)

Substitution of the equations

du ∧ dx = −K dx ∧ dt, duxl ∧ dt = uxl+1 dx ∧ dt, 1 ≤ l ≤ k − 1

into (109)–(111), yields Eqs. (104), (106)–(108). On the other hand, at least one of the
functionsfi1, i = 1,2,3, must depend on the variableu, for, otherwise, it is a simple
matter to convince oneself that(106)–(108)cannot be identities.

Conversely, to check thatEqs. (104)–(108)imply thatut = K is strictly pseudo-spherical
with associated functionsfij , is a straightforward computation.

Assume now thatut = K is strictly pseudo-spherical with associated one-formsωi =
fi1 dx + fi2 dt , i = 1,2,3, so that the constraints(104)–(108)hold. There are two cases:

(a) If f11,u = 0 butf21,u �= 0, it is enough to use transformation(10)of Proposition 2with
ρ = π/2. One obtains new associated one-formsσ 1 = ω2, σ 2 = −ω1, andσ 3 = ω3

satisfying the condition of the lemma.
(b) If f11,u = 0 andf21,u = 0, thenf31,u �= 0 by(105). UseProposition 2again, this time

apply transformation(11)with ρ(x, t) determined by the relations

ρx + f21 = 0, ρt + f22 �= 0.

Obtainω̂1 = ω1 coshρ − ω3 sinhρ, ω̂2 = (f22 + ρt )dt , andω̂3 = −ω1 sinhρ +
ω3 coshρ. It is clear thatf̂11,u �= 0. It remains to check that̂ω1 ∧ ω̂2 �≡ 0, but this is
obvious, sincêω1 ∧ ω̂2 = (f11 coshρ − f31 sinhρ)(f22 + ρt )dx ∧ dt , and this is not
identically zero by construction. �
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The following notation is used in formulating the classification theorems:

Bi2 =
k−1∑
l=0

uxl+1fi2,u
xl
, E = 1

2(f
2
11 + f 2

21 − f 2
31), H = 1

2(f
2
11 − f 2

31),

S = 1
2(f

2
11 + f 2

21), T = f21,uf31,t − f31,uf21,t , Z = 1
2(f

2
11 + f 2

21 + f 2
31).

The classification is divided in two branches, depending on whetherEu = 0 or not. Be-
cause ofLemma 5, one can assume a priori thatf11,u �= 0. No proofs are given, they are
straightforward generalizations of the ones appearing in Kamran and Tenenblat’s work[13].

1.Eu �= 0. Define the functionsJ l andCl , 0 ≤ l ≤ k − 1 recursively as follows:

J k−1 = 1

f11,u
f31,uf12,u, and for r ≥ 1,

J r−1 = −
k−1∑
l=0

uxl+1J
r
u
xl

− J r
x + 1

f11,u
[f31,u(B12 + f12,x)uxr + HuC

r

+f21(f31,uJ
r − f11,uf12,uxr )],

Ck−1 = 1

f11,u
f21,uf12,u, and for r ≥ 1,

Cr−1 = −
k−1∑
l=0

uxl+1C
r
u
xl

− Cr
x + 1

f11,u
[f21,u(B12 + f12,x)uxr + SuJ

r

+ f31(−f21,uC
r − f11,uf12,uxr )].

Theorem 6. Let fij , 1 ≤ i ≤ 3, 1 ≤ j ≤ 2, be smooth functions ofx, t, u, . . . , uxk
satisfyingfi1,u

xl
= 0 for 1 ≤ l ≤ k, andfi2,u

xk
= 0. Assume, furthermore, thatf11,u �= 0

andEu �= 0. The most general evolution equationut = K(x, t, u, . . . , uxk ) describing
pseudo-spherical surfaces with associated one-formsωi = fi1 dx + fi2 dt is given by

ut = 1

Zu

[f11(B12 + f12,x) +
k−1∑
l=0

uxl+1(f21[C
l + f22,x ] + f31[J

l + f32,x ])

+ 2f31(−f11f22 + f21f12) − Zt ]. (112)

Moreover, the functionsf22 andf32 must satisfy the constraints

f22 − 1

f11Eu

(Suf32,x − f21f31,uf22,x)

= 1

f11Eu

[
−f11f31,u(B12 + f12,x) + Su

(
k−1∑
l=0

zl+1J
i + f12f21

)

− f21f31,u

(
k−1∑
l=0

uxl+1C
l + f12f31

)
+ Stf31,u − Suf31,t

]
,
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f32 − 1

f11Eu

(f31f21,uf32,x + Huf22,x)

= 1

f11Eu

[
−f11f21,u(B12 + f12,x) + f31f21,u

(
k−1∑
l=0

uxl+1J
l + f12f21

)

+Hu

(
k−1∑
l=0

uxl+1C
l + f12f31

)
+ Htf21,u − Huf21,t

]
,

and the functionsf12 andfi1 must satisfy the differential equations

f32,zr = J r , f22,zr = Cr, for 0 ≤ r ≤ k − 1. (113)

2.Eu = 0. Define the functionsLl , 0 ≤ l ≤ k − 1 recursively as follows:

Lk−1 = 1

f11
(f31f32,u

xk−1 − f21f22,u
xk−1 ), and for r ≥ 1,

Lr−1 = −
k−1∑
l=0

uxl+1L
r
u
xl

+ Lr
x − 1

f11
[f21(B22 + f22,x)uxr − f31(B32 − f32,x)uxr ].

Theorem 7. Let fij , 1 ≤ i ≤ 3, 1 ≤ j ≤ 2, be smooth functions ofx, t, u, . . . , uxk
satisfyingfi1,u

xl
= 0 for 1 ≤ l ≤ k, andfi2,u

xk
= 0. Assume, furthermore, thatf11,u �= 0

andEu = 0. The most general evolution equationut = K(x, t, u, . . . , uxk ) describing
pseudo-spherical surfaces with associated one-formsωi = fi1 dx + fi2 dt is given by

ut = 1

f11,u

[
2
k−1∑
l=0

uxl+1L
l + f21f32 − f22f31 − f11,t + 1

f11
(f21(B22 − f22,x)

−f31(B32 − f32,x) + Et)

]
. (114)

Moreover, the functionf12 is given by

f12 = − 1

f11f11,u
[f31,u(B22 + f22,x)

− f21,u(B32 + f32,x) − f11(f31,uf32 − f21,uf22) − T ],

and the functionsf22, f32, andfi1 must satisfy the differential equations

f12,uxr = Lr, for 0 ≤ r ≤ k − 1, (115)

f12,x =
k−1∑
l=0

uxl+1L
l + 1

f11
(f21(B22 − f22,x) − f31(B32 − f32,x) + Et). (116)

This paper ends with two examples illustratingTheorems 6 and 7.
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Example 6. The cylindrical KdV equation

∂v

∂σ
= −∂3v

∂ξ3
− v

∂v

∂ξ
− 1

2σ
v

belongs to the first branch of the classification (Theorem 6). It describes pseudo-spherical
surfaces with associated one-forms

ω1 = −1

4

22/3(−2 + 25/3σv − 22/3ξ)√
σ

dξ

+ 1

36σ 3/2
(36σ 2 3

√
2vξξ + 18

√
σ − 36σ 3/2vξ + 18(22/3)σv − 9ξ22/3

+ 12
3
√

2σ 2v2 + 6
3
√

2σvξ − 6ξ2 3
√

2 + 28/3σv − 11(22/3)ξ − 28)dσ,

ω2 = 1

2

22/3

√
σ

dξ − 1

18σ 3/2
(3(22/3)σv + 3ξ22/3 + 3

√
σ − 6σ 3/2vξ + 14)dσ,

ω3 = −22/3(−4 + 6(22/3)σv − 3(22/3)ξ)

12
√
σ

dξ

+ 1

108σ 3/2
(108σ 2 3

√
2vξξ + 54

√
σ − 108σ 3/2vξ + 54(22/3)σv − 27ξ22/3

+ 36
3
√

2σ 2v2 + 18
3
√

2σvξ − 18ξ2 3
√

2 + 18(22/3)σv − 27(22/3)ξ − 56)dσ.

Example 7. The evolution equation

vt =
(
F − vx

x
+ ∂F

∂x
+ vx

∂F

∂v
+ vxx

∂F

∂vx

)
v2 − 3xv + x2vx + cv,

in whichF is an arbitrary smooth function depending at most onx, v, vx , andc is a constant,
belongs to the second branch of the classification (Theorem 7). Indeed (see[10]) it describes
pseudo-spherical surfaces with associated one-forms

ω1 = −x e−x

v
dx − e−x(−xF(x, v, vx)v + x3 + v2)

v
dt,

ω2 = dx + c dt, ω3 = ω1.
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